Close up of a large engine
Master of Science in
Mechanical Engineering

Faculty

  • Ashok Belegundu
    • Degree
      Ph.D., Civil Engineering, University of Iowa
    • Degree
      B.Tech., Civil Engineering, I.I.T. Madras

    Design optimization, nonlinear and dynamic finite element analysis.

  • Catherine Berdanier
    • Degree
      Ph.D., Engineering Education, Purdue University
    • Degree
      M.S., Aeronautical and Astronautical Engineering, Purdue University
    • Degree
      B.S., Chemistry, University of South Dakota

    Engineering cognition research; methods development for engineering education research; mixed methods research; eye-tracking methods.

  • Sean Brennan
    • Degree
      Ph.D., Mechanical Engineering, University of Illinois at Urbana-Champaign
    • Degree
      M.S., Mechanical Engineering, University of Illinois at Urbana-Champaign
    • Degree
      B.S., Mechanical Engineering, New Mexico State University
    • Degree
      B.S., Physics, New Mexico State University

    Ground vehicle dynamics and automation, mechatronics and embedded systems, data representations for map-based localization and robot guidance.

  • Margaret Byron
    • Degree
      Ph.D., Civil and Environmental Engineering, University of California Berkeley
    • Degree
      M.S., Civil and Environmental Engineering, University of California Berkeley
    • Degree
      B.S.E., Mechanical and Aerospace Engineering, Princeton University

    Motion of both passive particles and aquatic organisms in turbulent flow, focusing on intermediate scales and Reynolds numbers; scale-dependent complexity of organism/environment interaction.

  • Fan-Bill Cheung
    Degree
    Ph.D., Mechanical Engineering, University of Notre Dame

    Multiphase heat transfer, thermal processing of materials, nuclear reactor thermal hydraulics and safety.

  • John Cimbala
    • Degree
      Ph.D., Aeronautics, California Institute of Technology
    • Degree
      M.S., Aeronautics, California Institute of Technology
    • Degree
      B.S., Aerospace Engineering, Penn State

    Fluid dynamics, flow visualization, wind tunnels, neutron radiography, turbulence, computational fluid dynamics (CFD), turbulence modeling, turbomachinery, air pollution, stratified tanks, indoor air quality, heat pipes, instrumentation, hydroturbines.

  • Mary Frecker
    • Degree
      Ph.D., Mechanical Engineering, University of Michigan
    • Degree
      M.S., Mechanical Engineering, University of Michigan
    • Degree
      B.M.E., Mechanical Engineering, University of Dayton

    Optimal design, compliant mechanisms, smart structures, medical device design.

  • Aman Haque
    • Degree
      Ph.D., Mechanical Engineering, University of Illinois at Urbana Champaign
    • Degree
      M.B.A., University of Alberta
    • Degree
      M.S, Industrial and Production Engineering, Bangladesh University of Engineering and Technology
    • Degree
      B.S., Mechanical Engineering, Bangladesh University of Engineering and Technology

    Mechanical, electrical and thermal properties of ultrathin films; insitu transmission electron microscopy; MEMS; nano-scale materials behavior.

  • Dan Haworth
    • Degree
      Ph.D., Mechanical Engineering, Cornell University
    • Degree
      B.S., Mechanical Engineering, Carnegie Mellon University

    Numerical modeling of chemically reacting turbulent flows. Computational fluid dynamics. Reciprocating-piston internal combustion engines.

  • Reuben Kraft
    • Degree
      Postdoctoral, Mechanics, U.S. Army Research Laboratory
    • Degree
      Ph.D., Mechanical Engineering, Johns Hopkins University
    • Degree
      M.S., Mechanical Engineering, Johns Hopkins University
    • Degree
      B.S., Mechanical Engineering, University of Maryland, Baltimore County

    Computational solid mechanics, finite element analysis, numerical modeling, blast physics, high- performance computing.

  • Robert Kunz
    • Degree
      Ph.D., Aerospace Engineering, Penn State
    • Degree
      M.S., Aeronautical and Astronautical Engineering, University of Illinois
    • Degree
      B.S., Aerospace Engineering, SUNY at Buffalo

    Computational fluid dynamics, multiphase flows, turbomachinery, nuclear reactor thermal-hydraulics and thermal management analysis.

  • Stephen Lynch
    • Degree
      Ph.D., Mechanical Engineering, Virginia Tech
    • Degree
      M.S., Mechanical Engineering, Virginia Tech
    • Degree
      B.S., Mechanical Engineering, University of Wyoming

    Convective heat transfer and turbulent boundary layers, gas turbine heat transfer and aerodynamics, advanced experimental diagnostics.

  • Jaqueline O'Connor
    • Degree
      Ph.D., Aerospace Engineering, Georgia Institute of Technology
    • Degree
      M.S., Aerospace Engineering, Georgia Institute of Technology
    • Degree
      B.S., Aeronautics and Astronautics, Massachusetts Institute of Technology

    The Reacting Flow Dynamics Laboratory focuses on issues of reacting flows for energy and propulsion applications. High-speed laser diagnostics and other state-of-the-art experimental techniques are used in research areas like combustion and hydrodynamics.

  • Zoubeida Ounaies
    • Degree
      Ph.D., Engineering Sc. and Mech., Penn State
    • Degree
      M.S., Mechanical Engineering, Penn State
    • Degree
      B.S., Mechanical Engineering, Penn State

    Smart materials, with a particular focus on design and development of unique combinations of mechanical-electrical-chemical coupling in polymers and polymer nanocomposites; characterization of dielectric materials for sensing, actuation and energy storage.

  • Laura Pauley
    • Degree
      Ph.D., Mechanical Engineering, Stanford University
    • Degree
      M.S., Mechanical Engineering, Stanford University
    • Degree
      B.S., Mechanical Engineering, University of Illinois

    Computational fluid dynamics, boundary layer separation, large-eddy simulation, direct numerical simulation, cavitation inception, engineering education.

  • Chris Rahn
    • Degree
      Ph.D., Mechanical Engineering, University of California, Berkeley
    • Degree
      M.S., Mechanical Engineering, University of California, Berkeley
    • Degree
      B.S., Mechanical Engineering, University of Michigan

    Dynamic systems modeling, design, analysis, and control with applications to flexible structures; biologically inspired robotics; smart material actuators, sensors, and energy harvesters; and electrochemical energy storage.

  • Alex Rattner
    • Degree
      Ph.D., Mechanical Engineering, Georgia Institute of Technology
    • Degree
      B.S., Mechanical Engineering and Applied Mechanics, University of Pennsylvania

    Sustainable thermal-fluid energy systems, waste heat recovery, multiphase flow heat and mass transfer, high performance computing.

  • Alok Sinha
    • Degree
      Ph.D., Mechanical Engineering, Carnegie Mellon University
    • Degree
      B.S., Mechanical Engineering, Indian Institute of Technology, Delhi

    Turbine blade vibration, magnetic bearings, active vibration control, sliding mode control, robust control, neural network.

  • H.J. Sommer
    • Degree
      Ph.D., Mechanical Engineering, University of Illinois at Urbana
    • Degree
      M.S., Mechanical Engineering, University of Illinois at Urbana
    • Degree
      B.S., Mechanical Engineering, University of Illinois at Urbana

    Kinematics, biomechanics, mechatronics, robotics, machine vision, unmanned aircraft.

  • Adri van Duin
    • Degree
      Ph.D., Chemistry, Delft University of Technology
    • Degree
      Doctorandus, Chemistry, University of Amsterdam

    Molecular dynamics simulations on reactive and nonreactive systems; applications to combustion, catalysis and material failure.

  • Chao-Yang Wang
    • Degree
      Ph.D., Mechanical Engineering, University of Iowa
    • Degree
      M.S., Mechanical Engineering, Zhejiang University
    • Degree
      B.S., Mechanical Engineering, Zhejiang University

    Multiphase transport, batteries, and fuel cells.

  • Yuan Xuan
    • Degree
      Ph.D., Aeronautical Engineering, California Institute of Technology
    • Degree
      M.S., Aeronautics and Aerospace Engineering, California Institute of Technology
    • Degree
      M.S., Mechanical Engineering, Ecole Polytechnique
    • Degree
      B.S., Mechanical Engineering, Ecole Polytechnique

    Computational fluid dynamics, turbulent combustion, soot formation, numerical methods, uncertainty quantification.

  • Richard Yetter
    • Degree
      Ph.D., Mechanical Engineering, Princeton University
    • Degree
      M.A., Mechanical Engineering, Princeton University
    • Degree
      M.S., Mechanical Engineering, Cornell University
    • Degree
      B.S., Mechanical Engineering, Syracuse University

    Combustion/environmental science, combustion chemistry, heterogeneous combustion, materials synthesis, propellant combustion, combustion generated pollutants, atmospheric plume chemistry and chemical processing.

Additional Faculty

The faculty listed above regularly teach for the Penn State World Campus Master of Science in Mechanical Engineering program.  View the complete Department of Mechanical Engineering Faculty and Staff directory.

Penn State World Campus Student

Ready to Learn More?

Get the resources you need to make informed decisions about your education. Request information on this program and other programs of interest by completing this form.

* required 1/3

I agree to be contacted via phone, email, and text by Penn State World Campus and affiliates. I understand my information may also be shared with select providers to offer ads that may be of interest to me. Privacy Policy. reCAPTCHA protected. Google Privacy Policy and Terms of Service.